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ABSTRACT

Many neuro-degenerative diseases are difficult to diagnose in their early stages. For example, early diagnosis of Mild Cognitive Impair-
ment (MCI) requires a wide variety of tests to distinguish MCI symptoms and normal consequences of aging. In this article, we use the
wavelet–skeleton approach to find some characteristic patterns in the electroencephalograms (EEGs) of healthy adult patients and patients
with cognitive dysfunctions. We analyze the EEG activity recorded during natural sleep of 11 elderly patients aged between 60 and 75, six of
whom have mild cognitive impairment, and apply a nonlinear analysis method based on continuous wavelet transformskeletons. Our studies
show that a comprehensive analysis of EEG signals of the entire sleep state allows us to identify a significant decrease in the average duration
of oscillatory patterns in the frequency band [12; 14] Hz in the presence of mild cognitive impairment. Thus, the changes in this frequency
range can be interpreted as related to the activity in the motor cortex, as a candidate for developing the criteria for early objective MCI.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055441

The study presented in the article is aimed at developing methods
for early objective diagnosis of mild cognitive impairment (MCI)
in humans. Today, with the continuous growth of life expectancy
in developed countries, the problem of identifying biomarkers
of changes in normal cognitive aging is very acute in psychi-
atry and neurology. Early detection of such biomarkers would
allow starting treatment of such conditions before the moments
of pronounced clinical symptoms and signs of disease. The article
discusses the change in the characteristics of the brain activity of
such patients during a night’s sleep. This approach to the analysis
of EEG signals can be considered as an additional study, for exam-
ple, with polysomnographic control, and serve as an independent
objective marker for assessing the risks of cognitive impairment.

I. INTRODUCTION

An analysis of biological data using methods of nonlinear
dynamics may reveal information on the functional state of living
systems. A huge amount of information about the organism’s state
can be derived from the electrical signals that accompany the pro-
cesses in heart and brain functions. Recently, a lot of diagnostic
techniques based on this approach were developed, but the task of
diagnosing (especially early diagnosis) various diseases has not yet
been completely accomplished.

It is especially difficult to diagnose various neurodegenerative
diseases. Neuro-degenerative diseases [Alzheimer’s disease (AD)
and other forms of dementia] are dangerous diseases that signifi-
cantly reduce the quality of life and increase mortality. There are five
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stages of AD.1 The first stage, known as Mild Cognitive Impairment
(MCI), is usually accompanied by memory loss and does not sig-
nificantly affect daily life.2,3 The second stage involves forgetfulness,
short-term memory loss, repetitive questions, and loss of hobbies
and interests, resulting in limitations in the activities of daily living
limitations. The third stage represents the progression of cogni-
tive deficits, dysexecutive syndrome, further impaired activities of
daily living, transitions in care, and emergence of behavioral and
psychological symptoms of dementia. The fourth stage leads to agi-
tation, altered sleep patterns, and establishment of behavioral and
psychological symptoms of dementia; the patients need assistance
in dressing, feeding, and bathing. The last stage ends in bedbound,
no speech, incontinence, and a loss of basic psychomotor skills.

Stages two to five are fairly easy to identify by their obvious
symptoms. But the diagnosis of MCI is a complicated task because it
is difficult to distinguish MCI symptoms and normal consequences
of aging. A disease-modifying effect correlated with a persistent
delay in the underlying pathological process is difficult to prove
without validated biomarkers.4,5 The diagnosis requires a wide vari-
ety of tests, including a psychological test, blood and spinal fluid
tests, and neurological examination.6–10 Moreover, in the last few
years, many groups have started exploring the use of biomedical
signals, such as EEG, near-infrared spectroscopy (NIRS activity, its
typical applications include medical and physiological diagnostics
and research including blood sugar, pulse oximetry, functional neu-
roimaging, etc.), and others for early diagnosis of AD. Today, the
most common method for the registration of brain activity is elec-
troencephalography, being the cheapest and simple safe technology
widely used in clinical practice.

From the physical point of view, EEG realization is a com-
plex non-stationary signal generated by the cerebral cortex nerve
cells. Depending on where the signal was taken from, there are two
types of EEG: scalp (non-invasive) and intracranial (invasive). In the
case of scalp EEG, small metal electrodes are placed on the scalp
with good mechanical and electrical contact. Intracranial EEG is
obtained by implanting special electrodes implanted in the brain
during a surgery. The changes in the voltage difference between low-
impedance (<5 kOhm) electrodes are sensed and amplified before
being transmitted to a computer program to display the tracing of
voltage potential recordings.11

EEG signals contain a wide range of frequency components
in between 0.1 and 70 Hz. This range can be roughly divided
into the following frequency bands: Delta (<4 Hz), Theta (4–8 Hz),
Alpha (8–12 Hz), Beta1 (12–24 Hz), Beta2 (24–30 Hz), and Gamma
(>30 Hz).12 During different types of cognitive activity and/or phys-
iological state, EEG signals show an increased oscillatory energy in
different frequency bands. However, a flexible separation of oscilla-
tory activity in narrow bands, tuned for different study tasks, is often
used.

It has been shown that AD has (at least) three major effects
on EEG: 1, slowing of the EEG [increase in power in the low-
frequency range (Delta and Theta) and decrease in power in the
high-frequency range (Alpha and Beta)]; 2, an enhanced complexity
of the EEG signals; and 3, perturbations in EEG synchrony.13,14 These
effects, however, are not always easily detectable because of a large
variability among AD patients. Moreover, none of those phenomena
allow at present to reliably diagnose AD at an early stage.13

Historically, an analysis of EEG includes the examination of
the following features: frequency (or wavelength); voltage (or ampli-
tude); wave-form regularity; and reactivity to eye opening, hyper-
ventilation, and photonic stimulation through visual inspection,15

various types of evoked potentials,16,17 and Fourier analysis.18,19 The
quantitative analysis based on the Fourier approach allows us to
determine averaged frequency composition over a finite time inter-
val, but it does not make possible to consider how the frequency
composition of the signal changes in time. Therefore, other meth-
ods for analyzing non-stationary complex signals developed and
applied in nonlinear dynamics are well applicable, such as time-
series analysis,20,21 spatiotemporal analysis,22 network approaches,23

etc. In addition, today, applied methods of EEG processing based
on artificial neural networks and machine learning occupy a signif-
icant niche of applied problems such as signal artifact filtration,24,25

automatic detection of special events,26–29 BCI modules,30,31 etc.
The group of Vadim Semenovich Anishchenko was actively

involved in the study of biological signals using approaches that
are typical of chaos theory, such as Lyapunov analysis,32 multifractal
dimension estimation,33 synchronization theory,34,35 and others.36–40

Many research groups use the wavelet analysis for exploring
EEGs. This approach has found application in a wide range of tasks
related to the EEG analysis41–43 (e.g., epilepsy research44,45 and sleep
staging46,47). The wavelet analysis is the main tool for processing
EEG data in real time and creating brain–computer interface (BCI)
devices.42,48,49 The main advantage of the wavelet approach is that it
provides the ability to perform multiscale signal analysis and, in con-
sequence, the possibility of performing the time–frequency sweep of
non-stationary signals. This allows us to see the interaction of events
on a small scale, growing into large-scale phenomena.

In the presented work, we use the wavelet–skeleton approach
to find some characteristic patterns in the EEGs of healthy adult
patients and patients with cognitive dysfunctions. We try to avoid
strong individual variability in the dynamics of brain activity by
examining the state of the night sleep of patients. Then the total
number of patterns and their averaged durations are compared for
healthy and unhealthy patients. In some frequency diapason, the dif-
ference between durations of patterns is large enough to recognize
the MCI.

II. MATERIALS AND METHODS

A. Data and materials

The participants volunteered in our clinical trial on a com-
plimentary basis. All study subjects signed an informed consent
to participate in the clinical trial, received all necessary explana-
tions about the research, and agreed to the subsequent publication
of study results. Collected experimental data were processed with
respect to confidentiality and anonymity of research participants.
The design of the clinical trial was approved by the local research
Ethics Committee. The clinical trial subjects were recruited from
the patients at the University clinical hospital named after S. R.
Mirotvortsev (Saratov, Russian Federation).

The inclusion criteria for our study were as follows:

• written informed consent obtained before any assessment is per-
formed as part of the study;
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• male or female, age 60–75 years inclusive, females must be con-
sidered post-menopausal;

• psychological readiness to receive information, participant has
evidence of adequate functioning relating to cognition and ability
to communicate;

• no complaints for insufficient and nonrestorative sleep; and
• no sleep onset disorder (<30 min to fall asleep, no more one

awakening per night of>15 min) per last 6 months.

The exclusion criteria were as follows:

• any disability that may prevent the participants from complet-
ing all study requirements (e.g., blindness, deafness, and severe
language difficulty);

• Beck Depression Inventory score (BDI) > 13 (BDI is a 21-
question multiple-choice self-report inventory, one of the most
widely used psychometric tests for measuring the severity of
depression. 0–9 points indicate minimal depression, whereas
30–63 points indicate severe depression);

• a score of >7 on the Hospital Anxiety and Depression Scale
(HADS, it is commonly used by doctors to determine the levels of
anxiety and depression that a person is experiencing. Each of the
seven questions is scored from 0 to 3 and this means that a person
can score between 0 and 21 for either anxiety or depression);

• an apnea–hypopnea index [AHI, an index used to indicate the
severity of sleep apnea (pauses in breathing during sleep) where
the normal state corresponds to AHI < 5 and severe sleep apnea
corresponds to AHI> 30] and/or periodic limb movements index
(PLM) > 5 and/or restless leg syndrome (RLS, a long-term dis-
order that causes a strong urge to move one’s legs) during the
polysomnography night;

• current medical or neurological condition that might impact
cognition or performance on cognitive assessments (e.g., demen-
tia, Huntington’s disease, Parkinson’s disease, Lyme disease,
schizophrenia, bipolar disorder, major depression, active seizure
disorder, history of multiple traumatic brain injuries, alco-
hol/drug abuse or dependence currently, or dependence within
the last two years); and

• advanced, severe progressive, or unstable disease that may
interfere with safety, tolerability, and study assessments or
put the participant at special risk [e.g., active hepatitis, HIV
infection, severe renal impairment, severe hepatic impairment,
uncontrolled or significant cardiac disease including recent
(within 6 months) myocardial infarction, congestive heart failure
(functional class III–IV), or unstable angina].

A sleep diary was kept daily for a week by every participant. All
patients underwent neuropsychological status assessment by means
of the Montreal Cognitive Assessment [MoCA, 10-min cognitive
screening tool to assist first-line physicians in the detection of mild
cognitive impairment (MCI), a clinical state that often progresses to
dementia];50 Hospital Anxiety and Depression Scale (HADS); som-
nolence and sleep quality test; and tests for semantic and phonemic
awareness and memory. The sleep interviews and medical examina-
tion were conducted by the physicians, certified in neurology and
sleep medicine, whereas the psychiatric interviews were conducted
by board-certified psychiatrists.

A comparative assessment of the cognitive functions in study
participants via MoCA revealed a significant difference in indica-
tors according to which the patients were divided into two groups.
The first group included patients with MoCA scores of ≤27, and the
second group included patients with MoCA scores of>27.

The first group included six patients with MCI caused by
normal cognitive aging and/or dementia (group I, n = 6; BMI:
34.2 ± 3.8 kg/m2; BDI: 8.5 ± 3.5; HADS: 7 ± 1; MoCA 25.5
± 1.5). The second control group comprised five patients (group
II, n = 5; BMI: 20.3 ± 1.2 kg/m2; BDI: 8 ± 4; HADS: 7 ± 2; MoCA
28.5 ± 0.5). An average age of the subjects was 67 years 7 months.

The experiments were carried out in the late afternoon hours
at a specially equipped polysomnographic laboratory. The labora-
tory was a comfortable, soundproofed room. Patients came to the
clinic in the evening with their usual night clothes. After the neces-
sary standard preparation of the equipment, the patient fell asleep at
a convenient time.

The multichannel surface EEG data were collected using the
Encephalan-EEGR-19/26 recorder (Medicom MTD Ltd, Russia).
Data were recorded at 250 Hz sampling rate using the conventional
monopolar method of registration with two referential points and
N = 31 electrodes located in the 10–10 scheme51 [see Fig. 1(a)]. The
adhesive Ag/AgCl electrodes in prewired head caps were used to
obtain the EEG signals. Two reference electrodes, A1 and A2, were
located on mastoids, while the ground electrode N was placed above
the forehead. The EEG signals were filtered by a bandpass filter with
cutoff points at 0.5 Hz (HP) and 70 Hz (LP) and a 50 Hz notch filter.
We performed a numerical analysis of the EEG signals recorded dur-
ing the patient’s nocturnal sleep—from the moment of falling asleep
to the moment of full awakening, followed by morning rise.

B. Time–frequency analysis

In order to detect the oscillatory patterns in complex non-
stationary signals based on the continuous wavelet transform
(CWT),52–54

W(s, t) =
√

s

∫ ∞

−∞
x(t)ψ∗

(

t − t0

s

)

dt, (1)

where x(t) is the analyzed signal, s is the time scale that determines
the wavelet width, “*” is the complex conjugation, and ψt0 ,s(t) is
the basis of the wavelet transform in the form of a complex func-
tion. In the framework of working with biological signals, the Morlet
wavelet54 is traditionally used as the basis function,

ψt0 ,s(t) =
√

fπ
1
4 ejω0 f(t−t0) e

f(t−t0)
2

2 , (2)

where ω0 = 2π is the wavelet scaling parameter that provides a rela-
tionship between the time scale of the wavelet transform (s) and
the Fourier transform frequency (f), where f = 1/s. Thus, using the
Morlet wavelet basis, we can work with the usual classical frequency
representation of signals when calculating CWT.

The main advantages of the wavelet analysis are the simplicity
of the time–frequency sweep of noisy non-stationary signals and the
good speed of numerical processing. Using CWT makes it possible
to clearly and accurately trace the dynamics of the dominant com-
ponents with a maximum frequency in the signal. However, when
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FIG. 1. (a) The scheme of the standard “10–10” electrodes layout. Different background colors, gray and white, correspond to left, right, and center scalp spatial zones,
respectively. (b) Fragments of EEG signals recorded during the experimental active stage. The signals are shown in colors according to the corresponding recording electrodes.

considering the dynamics in the accompanying frequency ranges,
one faces a problem of identifying the various patterns of activity
that exist at the same time in the original complex signals. In biolog-
ical systems like neural ensembles, it seems that different patterns
of activity can simultaneously develop.55,56 Even in model systems,
coupled neural ensembles demonstrate the presence of several syn-
chronous modes that switch when the nature of the connection
changes.57,58 Apparently, in the study of recorded brain activity, we
can observe similar processes, which, however, are very difficult to
detect. A simple assessment of the presence and the amount of oscil-
latory activity in different frequency ranges substantially aggravates
the situation and, possibly, complicates the task of assessing the
dynamics of processes actually occurring in a biological system, for
example, reducing the quality of work of neurointerface devices.

The skeleton CWT method53,59,60 is used to improve the quality
of assessment of such coexisting processes. This technique is based
on the identification of local maximum in the instantaneous dis-
tribution of CWT energy in the analyzed frequency range at any
time. The following relation determines the instant CWT-energy
distribution:

E(f, tn) =
∣

∣W(f, tn)
∣

∣

2
. (3)

For each moment tn, there is a set of frequencies fi with
i = 1, 2, . . . , k, where each skeleton is observed at frequency fi, i.e.,
the local maximum amplitude of instantaneous energy CWT (3). In
this processing, we consider all set fi|i=1..N without ranking by the
amplitude value of the instantaneous energy E(f, tn). The sequence
number i characterizes only the sequence number of the extrema
and is not related to the amplitude E(fi, tn). Thus, in the process of
analyzing the total duration of the studied signal, a set of frequencies
fni is formed, where n is the duration of the experimental signal, i.e.,
the number of time samples in the signal.

Next, we denote the condition for the development of an activ-
ity pattern with frequency fj. To do this, we consider the following
condition on each time interval [tn; tn+1] for each frequency fj:

∣

∣

∣
f n
j − f n+1

s

∣

∣

∣
< δ, (4)

where f n
j are sets of frequencies for which local maximum E(fj, tn)

(3) is at time step tn, f n+1
j are similar sets of frequencies with local

maximum E(fj, tn+1) for the next time step tn+1, and δ is the numer-
ical constant based on the characteristics of the experimental signal.
The choice of δ value in (4) was due to the used sampling steps
at frequencies f and, accordingly, time scales s in the numerical
implementation of the continuous wavelet transform. For this task,
the step 1s = 0.02 was used. As empirical estimates have shown, δ
should not exceed double1s and δ = 0.04 in all calculations.

If the condition (4) holds for some frequencies f(a1)n and f(a2)n+1 ,
then these frequencies are used in the development of one oscillatory
pattern in time interval [tn; tn+1]. We now denote the frequency data
f(a1)n and f(a2)n+1 as (a1) and (a2), respectively. Next, for frequency
(a2), we again analyze (4) for the next time step tn+2. If the condi-
tion also holds for the new time step, then the identified pattern will
continue further with a certain frequency (a3).

The described actions must be cyclically repeated until the con-
dition (4) becomes not fulfilled, in other words, until the end of the
activity of this oscillatory pattern. Thus, each oscillatory pattern P
can be described by the frequency at each time moment of its exis-
tence, i.e., P(f, t) = {{(a1), tn} , {(a2), tn+1} , . . . , {(am), tn+m}}, where
m characterizes the time duration of pattern’s “life.” Then the time
duration of pattern P can be defined as

τ = tn+m − tn, (5)

and for the case of equidistant experimental time series, we use the
expression τ = m1t, where 1t is the sampling time interval in the
experimental series. So, the average frequency fmd can be estimated
for each frequency pattern P as

fmd =
m

∑

i=1

(ai)/m. (6)

For further analysis, we denote the following selection criterion
for correct oscillatory patterns P. If the time duration τ of the pat-
tern P does not exceed the oscillation period of its average frequency
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fmd, i.e., τ < (fmd)
−1, then this pattern must be considered as ran-

dom noise interference and should not be taken into account in the
further analysis of the signal.

We divide the entire significant frequency range of the EEG
signal into 10 intervals: 1f1 [1; 2,5] Hz, 1f2 [2,5; 4,5] Hz, 1f3
[4,5; 6,5] Hz, 1f4 [5; 9] Hz, 1f5 [9; 12] Hz, 1f6 [12; 14] Hz, 1f7
[14; 20] Hz,1f8 [20; 30] Hz,1f9 [7; 9] Hz, and1f10 [6; 9] Hz. For the
analysis of psychophysiological states and cognitive processes, stan-
dard frequency ranges are usually considered—delta, theta, alpha,
beta, and gamma. However, today it is often even in neuropsy-
chiatric research, for example, that the alpha and beta ranges are
divided into 1–3 intervals. In addition, for example, in Ref. 61
demonstrated that the results of evaluations of oscillatory modes in
various neurological disorders are typically only 2.2 times as likely
to occur in the literature as alternate results and typically with less
than 250 study participants when summed across all studies report-
ing this result. Moreover, as rightly described in meta-review,61

there is often some confusion when describing the standard fre-
quency ranges. While alpha and theta were more consistent, delta
could start anywhere from 0 to 2 Hz and end anywhere from 3.5
to 6 Hz. Meanwhile, beta could begin anywhere between 12 and
15 Hz and end anywhere between 20 and 50 Hz. Across all bands,
the most frequently used range was found in only 30%–50% of stud-
ies depending on the particular band. What one publication means
by �delta� or �beta� (etc.) is therefore not necessarily the same
as what another publication means by the same terminology. Thus,
although in our work, we analyzed the oscillation activity in inde-
pendent frequency intervals, we can compare with a certain accuracy
the selected intervals to the traditional ones, namely, 1f2 corre-
sponds to delta band, 1f4 similar to theta, 1f5 similar to alpha, and
1f7 and1f8 similar to beta 1 and beta 2 correspondingly. After that,
for each frequency interval 1f, we estimate the time-normalized
number of N1f patterns with an average frequency fmd falling in this
frequency interval1f, namely,

N1f =
m

t2 − t1
for ∀P, if fmd ∈ 1 f, (7)

where m is the total number of oscillatory patterns P and t1 and t2

are the start and end recording time.
Also, for each episode of wakefulness/sleep, we calculate the

average normalized time length of the “life,” the duration T1f of the
pattern is calculated according to the following equation:

T1f =
∑m

k=1 τk

t2 − t1
for ∀P, if fmd ∈ 1 f, (8)

where τk is the time duration of the kth oscillatory pattern with
an average frequency fmd lying within the boundaries of a certain
frequency range1f during a recording time.

III. RESULTS

As a result of EEG data processing, we have obtained a lot of
information about quantity and duration of oscillatory patterns for
each of the 31 EEG channels and each of the 11 patients. We should
note that the bioelectrical activity of the human brain in a state of

FIG. 2. Averaged oscillatory pattern lifetimes in seconds for patients with MCI
(red lines) and healthy patients (green lines) for different frequency bands1fi .

nocturnal sleep demonstrates a characteristic monotonous dynam-
ics. Moreover, the analysis of, for example, hypnogram polysomnog-
raphy within a group does not allow distinguishing between differ-
ent patients in the duration, number, or changes in sleep phases.
Hence, we should note that the article is limited to the presen-
tation of the data analysis method and this amount of patients
is enough for method presentation. First of all, it was needed to
find out some differences between healthy and illness patients. To
simplify data analysis, we have calculated the averaged values of
oscillatory patterns numbers and duration T1fi for each patient in
10 frequency intervals 1fi ∀ i ∈ [1 : 10]. Averaging was performed
over all 31 EEG channels. These averaged oscillatory pattern life-
times are depicted in Fig. 2. Red lines correspond to patients with
MCI in group I (patients 1–6), whereas green lines correspond to
group II (patients 7–11). Vertical axis represents averaged oscilla-
tory pattern lifetime T1fi in seconds; different panels were prepared
for several frequency intervals1fi.

The analysis of the number of oscillatory patterns does
not show any differences between healthy and illness patients.
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FIG. 3. Average number of patterns (top panel) and their average durations (bottom panel). For the patients of the first group, the diagrams are filled in red (gray in black
and white), and the diagrams for the patients of the second group are inside white with a green outline.

Oscillatory patterns’ lifetimes do not significantly differ in most of
the frequency intervals too. But in1f2,1f3, and, to a greater extent,
in 1f6, the averaged duration of oscillatory patterns for healthy
patients is longer than for illness ones.

Obviously, this qualitative observation requires a quantitative
assessment. As such an estimate, it is reasonable to use statistical
characteristics averaged over a set of illness and healthy patients. The
statistical analysis of number and lifetimes of oscillatory patterns for
all EEG channels is shown in Fig. 3. The top panel of Fig. 3 shows
averaged quantity of patterns, whereas the bottom panel shows its
averaged lifetime. This representation allows us to compare the
number and duration of patterns in the same frequency range and
is easily interpreted as follows. For example, 1f1 is characterized by
significant duration and a small number of patterns. It means that
oscillations with frequencies in range [1:2.5] Hz observes rare but

with significant duration. On the other hand for1f7, we can see that
patterns observes most often with short duration. Drawing a parallel
with Fig. 2, the notable differences in oscillatory patterns’ averaged
lifetimes become apparent for1f3 and1f6. However, the differences
in lifetime for frequency interval1f3 are rather small, so they inter-
sect within their interquartile ranges. Nevertheless, the panel with
1f6 shows the intersection for only minimum and maximum sample
values, whereas interquartile ranges are disjoint. Observed effects are
realized both in hemispheres and on the midline [Figs. 4(a)–4(c)].
The statistical analysis based on the Wilcoxon test demonstrates
significant differences in these characteristics for specified ranges,
p < 0.01.

It should be noted separately that only the average life-
time of patterns differs but not their number (Fig. 3, top
panel).
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FIG. 4. Average number of patterns (top panels) and their average durations in seconds (bottom panels) for left hemisphere electrodes (a), center electrodes (b), and right
hemisphere electrodes (c).

IV. DISCUSSION

Our study demonstrates that MCI causes changes in brain
electrical activity in the frequency band f ∈ [12; 14] Hz, which corre-
sponds to the Beta rhythm (Beta 1 power). It is known from Refs. 62
and 63 that oscillations in the beta wave are interconnected with
activity in the motor cortex. The primary and secondary motor and
somatosensory cortex is located in the area of the central gyrus.
Thus, the changes in the frequency range 1f6 ∈ [12; 14] Hz can be
interpreted as related to the activity in the motor cortex.

To confirm this statement, let us consider the distribution of
the lifetimes of patterns from this frequency range over the EEG
electrodes, as shown in Fig. 5. The difference between lifetimes of
oscillatory patterns of conditionally healthy and MCI patients is
maximum in signals from electrodes FT7, C3, Cz, C4, CPz, and
CP3. These electrodes were located in the left frontal and central
regions of the scalp (see Fig. 1, electrodes with a squared green back-
ground). In other words, most of them are located directly above

FIG. 5. Lifetimes in seconds of patterns for each of 31 EEG channels in frequency
band1f6. Curves for group I are shown with red dashed lines. Difference between
healthy and illness patients alter from channel to channel.

the brain regions of left temporal gyrus and central gyrus. Today,
numerous studies link the impairments in the cognitive background
of patients observed in various states to changes in the activity of
the motor cortex. For example, on the basis of transcranial magnetic
stimulation (TMS), a decrease in the association between the motor
activity of the dominant hand and areas of the brain associated with
speech functions has been shown.64 Moreover, as demonstrated in
Refs. 65–67, even mild cognitive decline is correlated with observed
gait disorders, owing to probable changes in higher levels of motor
control. In turn, MRI studies in case of gait disturbance demon-
strated a decrease in the volume of some parts of the motor cortex of
the brain. Thus, the revealed changes in the activity of the motor
cortex during sleep supplement the already available information
and emphasize that these variations persist in humans even during
nighttime rest.

Such an uneven spatial change in the estimated characteristic
of the oscillatory pattern’s duration is probably associated with the
well-known disturbance of global synchronization in classic alpha,
beta, and gamma frequency bands.68 In addition, it is known that
MCI subjects with hippocampal atrophy have certain EEG activity
changes, which showed the increase in the theta and alpha power on
frontal and temporo-parietal areas.69 Moreover, the obtained spatial
distribution demonstrates the patterns of lateral nature correspond-
ing to the described reductions in complexity and an increase in the
predictability of EEG signals as in the review.70 When analyzing the
duration of oscillatory patterns observed in groups of patients with
mild cognitive impairments, we observe a decrease in the frequency
ranges, up to17, which corresponds to delta, theta, and alpha oscil-
latory modes. In other words, synchronous neural activity, leading
to the emergence of oscillatory patterns in these frequency ranges,
lasts at time intervals with a shorter length than in the groups of
conventionally healthy subjects. From the point of view of the pre-
sented numerical approach to the assessment of EEG characteristics,
we observe an extremely similar dynamics of the lifetime of oscilla-
tory patterns in the scalp space (see Fig. 5). In other words, for MCI
patients, we observe a significantly smaller spread in the duration of
patterns in the EEG channels compared to the group of convention-
ally healthy participants. We assume that this can be interpreted as a
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decrease in the complexity of oscillatory processes in the bioelectric
activity of the brain.

The above results of assessing changes in EEG activity corre-
lated with MCI-diagnosis have been obtained by a direct analysis
of the entire nocturnal sleep recording. Polysomnographic sep-
aration at sleep stages is still difficult to analyze automatically
and may involve some subjectivity on the part of the specialist
somnologist.71,72 A simple diagnostic approach based on the study
and quantification of records of all night sleep appears to be quite
interesting and promising.
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